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A system of rodlike dipoles is investigated by the method of collective coordinates and by the method
of Debye-Hiickel. The possibility of the appearance of a screening effect is considered. The existence of
a first-order isotropic nematic transition in the limit of dilute solutions and in the high-density limit is

demonstrated.

PACS number(s): 61.30.Gd, 64.60.Cn, 64.70.Md, 82.60.Lf

I. INTRODUCTION

There are several approaches to the statistical mechan-
ics of liquid-crystal systems (see, for instance, the review
by Vroege and Lekkerkerker [1]). The phase separation
in solutions of rodlike molecules interacting via short-
range forces was first explained by Onsager [2] using the
virial-expansion theory. In that work he already drew at-
tention to electrostatic interactions between the particles.
So the effect of the electrostatic repulsion is equivalent to
an increase of the effective diameter of rods, and depends
on the thickness of the electric double layer and on the
ionic strength.

A further development of the Onsager theory of rod-
like polyelectrolytes was made by Odijk and co-workers
[3,4]. They used the Onsager decomposition of the
Debye-Hiickel potential and calculated the second virial
coefficient. Onsager and his followers restricted them-
selves to the situation when the electrostatic energy of
rods is much greater than the temperature and the rod
concentration is much less than unity. So in this case the
second-virial-coefficient approximation is quite sufficient
to describe the phase transition in solutions of long rods.
Furthermore, in this limit it is necessary to know an ac-
curate form of the potential only for the configuration
where the outer parts of the double layers overlap. The
detailed structure of the potential of the mean force for
two charged rods is of no importance in this case. This
may be the reason why the subtle effects similar to
screening effects in the rod system have not been studied
in these works.

The opposite high-density limit has been considered by
Deutsch and Goldenfeld [5,6], who presented a systemat-
ic way to calculate the free energy of charged needles by
means of the collective-coordinate formalism. The au-
thors’ efforts were concentrated mainly on determining
the phase-transition parameters while analysis of correla-
tion properties of charged needlelike particles remained
without attention.

The aim of this paper is to consider some properties of
highly concentrated solutions of rodlike dipoles. The
consideration is based on the idea of Deutsch and Gol-
denfeld. The collective-coordinate method may be used
to study the system of particles interacting via potential
less singular than r 3. Since the needlelike dipole can be
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represented by two point charges attached to the ends of
a rod the electrostatic attraction of polar rodlike particles
is essentially Coulombic. Hence the free energy of rod-
like dipoles may be derived by means of the collective-
coordinates method [7-9]. Cebers [7] performed calcu-
lations for the system of needlelike dipoles and obtained
the critical temperature and concentration from thermo-
dynamic stability conditions. Kornev and Eskin [8] have
generalized his theory by means of introducing the steric
interaction between rods. Analysis of phase states has
been carried out on the basis of the Maier-Saupe approxi-
mation. The formation of the three types of anisotropic
structures has been shown.

Neither Cebers nor Kornev and Eskin have clarified a
domain of validity of their approximations.

In this paper we discuss correlation properties of rod-
like dipoles to throw some light upon the problem. The
paper is organized as follows. In Sec. II we briefly re-
view the early works by Cebers [7] and Kornev and Eskin
[8]; then we estimate the critical parameters of the
isotropic-nematic transitions for polar systems. Here we
closely follow the discussions of Kornev and Eskin [8]
and present only such formulas which are necessary to
elucidate the results being obtained. In Sec. III we
present some new results. To find a domain of applicabil-
ity of the random-phase approximation (RPA) for polar
systems in Sec. III we perform a high-density expansion
of the effective potential. Such an approach is used as
well in the Debye-Hiickel theory of electrolytes. The
effective potential includes the Debye-Hiickel term which
expresses the fact that the interactions between particles
are screened by the presence of other particles. This
effect can be considered as crowding of the neighboring
polar molecules around the poles and the formation near
each pole of a layer of molecules that are bound to the
pole. As a consequence of this effect we derive the limit
of validity of the theory. This limit resembles the
Debye-Hiickel condition.

The conclusions that can be drawn from this work are
summarized in Sec. IV.

II. FORMAL CALCULATION

We consider a system of total volume V containing N
rods with length / and diameter d. The moment per unit
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length of rods is m. The microscopic polarization vector
L is given by

sz

12
r,—n;s)ds ,
1/2

where n; is a unit vector parallel to the ith rod and r; is
the center of mass of the rod. Further, we introduce the

J

collective-coordinate transformation

1/2 zk-(rA-f—nA:)
2 f I 1 ds R
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which is the Fourier transform of the microscopic polar-
ization vector. By using L, we write the energy of
dipole-dipole interaction as
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We then introduce the Onsager artifice, that is, we
shall treat particles of different orientation as particles of
different kinds [2]. Thus we split the set of all directions
in space among elements of solid angles w;, ...,y sur-

rounding the directions nj, ..., n;, respectively. Then
the free energy of the system takes the form
v 9,
F=—kTIn H ———'— "
a{r;}) ,
x [ Hde AL })exp[ U(Ly)/kT] .
k

(1)

Here we denote the rod populations of small solid angle
w; by M;. Q, is a configuration integral of hard rods,

0o=V"" [ exp[ —Uy(R)/kT1dR, - - dRy ,

where U, is the energy of steric interaction and
d({ })/9({ }) is the Jacobian.

The Jacobian of transformation from physical variables
to collective ones is obtained as a result of averaging the
function

=]] 8(ReL; —ReL,)6(ImLy —ImL,) ,

k
over a system with short-range interaction (see, for in-
J
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|
stance, Yukhnovskii and Golovko [10]).
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The vector k in the transition function runs over possi-
ble values in the half-space k; > 0.

The Jacobian cannot be calculated exactly, but in the
random-phase approximation (RPA) it becomes a Gauss-
ian (see Appendix).
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where tensor A means the ordinary average of the tensor
L.L_,,

1
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As it is shown in the Appendix, tensor A is given by
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Inserting expression (2) into formula (1) we have the
Gaussian integral
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By transition to the continuum limit

V
Do; — dk,
e % (2m)? f

we have the free-energy expression [8]
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Here f(n) is the distribution functlon, 8,1, D(k)=4m(kk /k?), @ is the volume fraction, c =N /V is the concentra-
tion, and D(0) is the depolarization tensor of the volume,

D(0)= [ D(R)}R=V— [ RalR|7%s,
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and S is the boundary surface.

Note that the steric interactions bring the terms of odd order of n but if the external field is absent the polarization
fluctuations do not lead to the formation of state with uncompensated electric flux [9]. This fact may be explained by
means of the simplest physical considerations.

Indeed the energy of two rodlike dipoles in antiparallel state is 2m 2% /1%d and it is twice as large as energy in parallel
state. So the system tends to organize the “antiferroelectric” state. We shall analyze the phase transition to the anti-
parallel state. In this case the terms of odd order of n vanish by symmetry and we have the functional differing from
that in Ref. [7] by the Onsager term [second term in formula (4)] only. In order to analyze the extremum point of free-
energy functional we have to solve the following integral equation which may be obtained as the variation derivative of

functional (4),

Izdcszff(n’)lan'Idzn’+ch Inf(n)

KT 1 s
+— d k
2 (27'r)3 f

where u is determined from the condition
[ fimdn=1. (6)

Note that as well as in the Onsager theory the distribu-
tion function of isotropic phase f =1 always satisfies the
system of equations (5) and (6). It may be established by
simple substitution. Indeed, in the limit of dilute solution
the particles have arbitrary orientations (f =1). Howev-
er, at a certain concentration, the particles begin to be
affected by each other so that the system tends to organ-
ize a structure with minimum free energy. In other
words, the system must be described by means of another
solution. The main goal now is to find the critical con-
centration ¢ * at which the anisotropic phase may appear.

Following the theory of branching of the solutions of
nonlinear equations [11,12] the critical concentration is
found as a bifurcation point of the system of equations (5)

D(k) J fn'' A ken'l /2)d%

D(k) nnA%(k-nl/2)

-1
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kT

f

and (6). Near the spinodal the distribution function can
be represented by the Landau—-de Gennes form as

f=1+(c—c*)aPy(n)+ --- ,

where P,(x) is the second Legendre polynomial, and a is
a constant.

In order to determine the critical concentration we
have to linearize the system of equations (5) and (6) in the
vicinity of the solution f =1 and to find the smallest ei-
genvalue of the resulting operator. Omitting the simple
but tedious calculations, we write the resulting transcen-
dental equation for determining the critical concentration

2
A_|A|l d 2
” 7’] 641+k h(A), (7)
where
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Cebers [7] has obtained a result similar to that of Eq.
(7) using the thermodynamic stability condition and
determined the critical temperature and concentration
with the help of geometric constructions, namely, as the
point of tangency of the line in the left-hand side and the
second term in the right-hand side. Below Eq. (7) will be
regarded as the branching condition, since it determines
the possible number of anisotropic phases. The number
of possible phases is defined by the number of roots of Eq.
(7). The relationship between the critical concentration
and molecular parameters have been discussed by Kornev
and Eskin [8] in the general case. They have shown that
Eq. (7) has several roots for a range of the molecular pa-
rameters.

Since still little is known about the status of the
random-phase approximation we cannot interpret these
results. So the key objective is the determination of the
correct conditions of applicability of the RPA. Then we
shall return to the branch equation in order to perform
the analysis from the physical viewpoint.

III. PHYSICAL CONSTRUCTION

First we shall restrict our discussion to simple systems
in which the particles interact via long-range potentials.
We begin with the one-body effective potential acting
upon a particle but having its origin in the totality of in-
teractions with all other particles. Let A(r—r’,n,n’) be
the interaction potential between two dipoles in the
configurations (r,n) and (r’,n’). It is defined by

H(r—r',n,n’)=h(R,n,n’)
=— [ [ msR—R"—ns)
—172
Xn-E(R"”)dR"ds , (8)
where
:—V¢) s

and @ is the self-consistent potential. It has to satisfy the
equation

Ap=47V 4 , 9)

where 4 is the polarization vector. The polarization vec-
tor is defined by

/‘=fffl/,izmna(R‘ﬁ_nS)g(ﬁ,n,n’)dfidznds
+ [, matsR—n's)ds , (10)

where g is the pair distribution function. In equilibrium
state the connection between g(R,n,n’) and the interac-
tion potential A(R,n,n’) is given by the Maxwell-
Boltzmann formula

g(R,n,n")=cf(n)exp

__h
kT
where c¢f(n) denotes the concentration at infinity in the

configuration n. According to the theory developed by
Debye and Hiickel we assume that 4 /kT <<1 then

h

1___.

11
T (11)

g(R,n,n")=cf(n)

Substituting the expansion (11) into (9) and (10) we have

Ap=— 2. [ [ [ nfm)BR-R-mh(R,m)
XdR d*nds
+4rmV- [ ws(R-w)ds . (12)

To evaluate ¢ it is convenient to introduce the Fourier
transform ¢,

= [ e™®Rp(R)dR ,

Then Eq. (12) can be solved analytically and solution is
expressed as

o 1

j4mm A
i4mrm 2

(k-n')

Px=

K2+ 4“"’ [ finia? (k-n)d’n

l
kn2

For the physical interpretation of the results the in-
verse Fourier transform is necessary. In the general case
it cannot be written in closed form and we shall have to
select some simple limits:

(a) Limit of dilute solution. In the small-A limit h = U
and, as it is easy to check, collective properties of the
rods are not displayed. There is no local field acting on a
given site.

(b) High-density limit A— . This is more interesting
from the physical viewpoint. We shall consider this case
in more detail.

Let us rewrite the right-hand side of Eq. (12) in more
convenient form. Notice that the second term may be
considered as

172

4TmV - f 8(R—n's)ds
—47Tm5‘32— f_”lz/za(z —5)ds8(x)5(y)
1 y
=4mm |8 R+n'5 ) R—ni (14)

(here the z axis is chosen in the direction of n).
Integrating Eq. (8) by parts and applying to the
effective potential the same method as in Eq. (14) we get
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After such a calculation the first term on the right-hand side of Eq. (12) can be written as

4mme 12 _
=g v, s lR_R—'“E

h(R,n,n’)dR d*nds

8”’" € [pRom)— [ fmg(R—nl,n)+ (R +nl,n)ld | . (19

Inserting expressions (14) and (15) into (12) we get a new form of Eq. (12),

817'm (4

Ap=

[chn) [ f()[@(R—nl,n')+@(R+nl,n')d’n ]+4ﬂm

l

L
5§ |R+n’ 5 —8 |R—n 3 (16)

It is possible to give a physical interpretation of this equation. The first term on the right-hand side of the equation
may be treated as an effective charge of the matter. The other terms on the right-hand side denote the charges located

at the points +n'//2 and —n'l/2.

In order to analyze the large-scale correlations let us transform the

integrodifferential Eq. (16) to the integral equation. To do this we can use the Green function of the Helmholtz equa-

tion. Then the solution of the Eq. (16) can be written as

/D [f f()[@R'—nl)+@(R’+nl)] |dR'd*n , (17

_ A exp(—VA|R—R’
=Pt 4, J [R—R'|
where
_mexp(—VAIR/I—n/2|) _ mexp(—VAIR/I+n/2])
Po [R—nl/2]| [R+nl/2])

Let us study the behavior of the potential near the poles. We shall consider the pole located at point n’/ /2. The in-

tegral on the right-hand side of Eq. (17) can be estimated as

—VAR-R’
IR—R’|

_ A expl
I= 41 f

/1) [ff(n)[<p(R'—n1)+¢(R’+“”] ]dR'dZn

A p(—V/Alr| /1)
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|z
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~= = o [ff( m){~e(r-+nl/2)+@(~r+3nl/2)] |drd’n

|z

The vicinity of the point —n’/ /2 gives the main contribu-
tion to the integral s0 it can be estimated as

exp(—V/Alr| /1) 5
2117' ff ” f(n)drd’n
|r| r+—2—

=0(1).

Consequently, the potential in the vicinity R=n’l /2 can

be written as

—VAIR/I—n/2|)

[R—nl /2|

The Debye form (exponential form) of the effective poten-

tial leads us close to the condition of validity of this ap-

proximation
mva

kT

__ m exp(

<1 or VAy<<l1. (18)

Now we can comment on the results of the asymptotic
analysis from the physical viewpoint. The first limit cor-
responds to the case where the rods behave like solitary
dipoles, as in the situation which is typical for pure polar
gases. There is no local field with the characteristic scale;
nevertheless, this limit contains the important case of low
temperature so that a dimensionless coupling constant is

y>1.

Indeed, the high-temperature expansion is correct here
because the energy of the order of U=~cm?2l? (mean dis-
tance between rods is ~¢ ~ 13

In the high-density limit the long-range effects dom-
inate and rods tend to form the ‘“Debye atmospheres”
around the poles. The inequalities (18) are required at
high density to ensure that the temperature dominates
over the energy of the local field of neighboring rods.
The above discussion gives a definite interpretation of the
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results of branch equation analysis. But first we have to
show the equivalence of both approaches. To do it we
derive the free-energy expression. The free energy may
be written exactly as

F=Fid+-%v- ffdrdr’dzndzn’f(n)f(n’)U(r—r’)
Xfldag(r,r’,n,n',a), (19)
0

where a is introduced as a coupling constant for a pair
potential. In expression (19) g(r,r’,n,n’,a) is the pair-
correlation function for a system with pair potential aU.
F,, is the ideal-gas part of F. According to the definition
of the pair-correlation function we have

—o—hakT_ hla)

xT (20)

g

where [see expression (13)]

am’ : L L
T D(k):nn'A kn2 A (k'n >
hk(a): 5 3 .
acm” oo, 2 gnt |2
1+57-D(k): [ f(n)onA? [k-n—- |d’n

Inserting expansion (20) into expression (19) and apply-
ing the Fourier transforms, we obtain functional (4) with
d =0. Consequently the physical construction is
equivalent to the formal calculations. From the preced-
ing analysis it follows that the free energy expansion is
valid in high-density limit so that the inequality A!/%y
<< 1 has to be satisfied.

In order to extend these results to the case of hard-core
interactions we have to notice that the effective potential
acting upon the particle in the configuration (R,n) due to
the particle in the configuration (0,n’) actually depends
on a location of the third particle in the configuration
(R,@) [see Eq. (12)]. So for a proper definition of the
probability we have to take into account the excluded
volume of the particles in configurations (R,n) and
(R,f). After such modification of the pair distribution
function we get functional (4).

IV. DISCUSSION

We shall restrict our discussion to the limit of dilute
solution and the high-density limit, in which the RPA is
correct.

Let us consider the case y — o, A—0. Within this
limit we have de Gennes—Pincus situation [13]. The sys-
tem of needlelike dipoles has the potential well in the an-
tiparallel state greater than in the parallel state. So the
de Gennes—Pincus chains are unstable and particles tend
to condense in clusters with compensated polar momen-
tum. Such effect is well known in the colloidal systems
(see, for instance, [14]).

A synthesis of ferronematics [15-17], i.e., suspensions
of single-domain rodlike ferromagnetic or ferrimagnetic
particles in nematic liquid crystals, reveals an interest in
deriving the condition of weak clustering.

Initial estimates have been suggested by Brochard and
de Gennes [18]. They have obtained the clustering condi-

tions by means of the chain model and used them to
determine the critical length of the particle /, above
which different grains will tend to form a chain. The
minimum concentration, above which the average nemat-
ic orientation follows the orientation of the grains, is
known and has order d>/D? [18], where D is the sample
size.

Let us estimate the threshold from our theory. In the
case Y — o, A—0 the first term on the right-hand side of
the branch equation may be neglected and we have

_ 105

21
802

Pe

}/

where parameter o =2m?2[?/1?dkT is a measure of the
ratio of the energy of rodlike dipoles in the antiparallel
state and the thermal energy.

Using the experimental parameter values M,
=4ml /md?*1 =340 G and d =7X 107 % cm from [15-17]
we can find that @, ~107> at room temperature. In the
most experimental situations the volume fraction ¢ is of
the order of =107%, i.e., it is less than the critical value
¢@.. Formula (21) may be used to determine the critical
size of the particle for different models of the director
orientation and magnetization [18,19], i.e., for different
Pe-

Let us now proceed to the high-density limit. It is con-
venient to rewrite Eq. (7) in the form

1
——=vyh(A) .
64y vh(A)

>
Nlﬁ_

Function A(A) is decreased and has a maximum at
A=0, h(0)= L. So Eq. (7) has a unique solution in the
vicinity ¥ =0, which may be found by the point of inter-
section of the hyperbola and the integral curve. In the
asymptotic limit we have

¢C=2—dl~—128y2h(3za> )

Hence the instability appears earlier than that in the On-
sager case [11], but the contribution to the critical con-
centration by the electrostatic interactions is weak.

In conclusion, we note that the free-energy functional
may be used for solving an electrolytic problem. Indeed
after substituting 47 /k?* for D(k):nn in formula (4) we
shall get a free energy of the system with Coulombic in-
teractions. The functional of Deutsch and Goldenfeld
differs from this by the term

kTV cm?
— d3k D(k): (n)nnA%k-nl/2)d’n .
227y J a5 [ fn

This contribution can be treated as the energy of rods
placed in their own fields. This term can be added to the
functional of Deutsch and Goldenfeld in order to elimi-
nate a divergence. Such procedure is widely used (see, for
instance, Lifshitz [20] where a similar term is referred to



the vacuum fluctuations). So this divergence is of no
physical consequence and we can say that the “electrolyt-
ic” modification of functional (4) is the same as that of
the functional of Deutsch and Goldenfeld. This form is
the regularization of their functional only. In the next
paper we shall study the electrolytic problem and consid-
er the problem of counterion condensation on the rodlike
molecules.
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APPENDIX: CALCULATION OF THE JACOBIAN

We shall evaluate the integral

afr})
(L))

kT J(Lr) .

1
dr;ex
gy | dmiesp
Using the integral representation of the 8 function

_ 1 -
o8(x)= - f_w
we have

{1’1}) lwk k
sty =4 Tame ™ (er

expiox do ,

where brackets denote the average with respect to function exp(—

—12 oLy ])dRemkd Imw, ,

Uy /KT).

Expanding the exponent inside the brackets and retaining the products of term (L L _, ) only, we get

(r;})
a((L })—S[LO EMnl]f )

k(;éo)

’
“”k'Lk

Calculating the Gaussian integral we have Eq. (2).
To evaluate the cumulant average

1

N
0 uFv

Ak)=

Q —3 M, MB,,U+2M n,n, A kn,l/2) .
0 u,v

We introduce the Mayer function f [21,2,1] as

—UO/kT:1+f .

exp [—

S M, M,n,n,A(k'n,l/2)Akn,1/2) [ e

3 3 o_:Ak) |d Rewd Imo, .
k(#0)

TU T TR T e dry+ S Myn,n, Ak, 1/2)
u

(A1)

To make the calculation possible we retain the first term in the cluster integral only. It is convenient to express the
relative position vector r between the center of mass of rods in terms of the variables suggested by Straley [22]

Xn,
r=oan, +Bll +‘}/—|——m .

The volume element dr is expressed as
dr=|n,Xn,|dadBdy .
Then the integral in formula (A1) is written as

50 1ffe krgr=yN- lfljz/zfl/lz/z fjdexp

i

n, Xn,
ak-n, +pkn, +yk-———

—— In, Xn,|dadBdy .

In,,

v ,

Calculating these integrals and inserting the result into the formula (A1) we get

B,,=—n,n,AXk-n,//2)A%k-n,l/2)A |k —a

In,,

ol

Qo=1-12dV" 'S M ,M,|n, Xn,| .
u,v

which are Eq. (3).

d|ln,Xn,|,
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